LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Growth Mechanism of Five-Fold Twinned Ag Nanowires from Multiscale Theory and Simulations.

Photo from wikipedia

Five-fold twinned metal nanowires can be synthesized with high aspect ratios via solution-phase methods. The origins of their anisotropic growth, however, are poorly understood. We combine atomic-scale, mesoscale, and continuum… Click to show full abstract

Five-fold twinned metal nanowires can be synthesized with high aspect ratios via solution-phase methods. The origins of their anisotropic growth, however, are poorly understood. We combine atomic-scale, mesoscale, and continuum theoretical methods to predict growth morphologies of Ag nanowires from seeds and to demonstrate that high aspect ratio nanowires can originate from anisotropic surface diffusion induced by the strained nanowire structure. Nanowire seeds are similar to Marks decahedra, with {111} "notches" that accelerate diffusion along the nanowire axis to facilitate one-dimensional growth. The strain distribution on the {111} facets induces heterogeneous atom aggregation and leads to atom trapping at the nanowire ends. We predict that decahedral Ag seeds can grow to become nanowires with aspect ratios in the experimental range. Our studies show that there is a complex interplay between atom deposition, diffusion, seed architecture, and nanowire aspect ratio that could be manipulated experimentally to achieve controlled nanowire syntheses.

Keywords: growth mechanism; five fold; fold twinned; nanowire; growth

Journal Title: ACS nano
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.