LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Effect of Nickel on MoS2 Growth Revealed with in Situ Transmission Electron Microscopy.

Photo from wikipedia

MoS2 has important applications in (electro)catalysis and as a semiconductor for electronic devices. Other chemical species are commonly added to MoS2 to increase catalytic activity or to alter electronic properties… Click to show full abstract

MoS2 has important applications in (electro)catalysis and as a semiconductor for electronic devices. Other chemical species are commonly added to MoS2 to increase catalytic activity or to alter electronic properties through substitutional or adsorption-based doping. While groundbreaking work has been devoted to determining the atomic-scale structure of MoS2 and other layered transition-metal dichalcogenides (TMDCs), there is a lack of understanding of the dynamic processes that govern the evolution of these materials during synthesis. Here, in situ transmission electron microscopy (TEM) heating, in combination with larger length scale ex situ experiments, is used to investigate the effects of added Ni on the growth of MoS2 during the thermolysis of the solid-state (NH4)2MoS4 precursor. Low concentrations of Ni are observed to cause significant differences in the MoS2 crystallization and growth process, leading to an increase in MoS2 crystal size. This is likely a result of the altered mobility of interfaces between crystals during growth. These findings demonstrate the important role of additional elements in controlling the evolution of TMDCs during synthesis, which should be considered when designing these materials for a variety of applications.

Keywords: microscopy; situ transmission; mos2; electron microscopy; growth; transmission electron

Journal Title: ACS nano
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.