LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoscale Visualization and Multiscale Electrochemical Analysis of Conductive Polymer Electrodes.

Photo by nci from unsplash

Conductive polymers are exceptionally promising for modular electrochemical applications including chemical sensors, bioelectronics, redox-flow batteries, and photo-electrochemical systems due to considerable synthetic tunability and ease of processing. Despite well-established structural… Click to show full abstract

Conductive polymers are exceptionally promising for modular electrochemical applications including chemical sensors, bioelectronics, redox-flow batteries, and photo-electrochemical systems due to considerable synthetic tunability and ease of processing. Despite well-established structural heterogeneity in these systems, conventional macroscopic electroanalytical methods - specifically cyclic voltammetry - are typically used as the primary tool for structure-property elucidation. This work presents an alternative correlative multi-microscopy strategy; data from laboratory and synchrotron-based micro-spectroscopies, including conducting-atomic force microscopy and synchrotron nanoscale infrared spectroscopy, is combined with potentiodynamic movies of electrochemical fluxes from scanning electrochemical cell microscopy (SECCM) to reveal the relationship between electrode structure and activity. A model conductive polymer electrode system of tailored heterogeneity is investigated, consisting of phase-segregated domains of poly(3-hexylthiophene) (P3HT) surrounded by contiguous regions of insulating poly(methyl methacrylate) (PMMA), representing an ultramicroelectrode array. Isolated domains of P3HT are shown to retain bulk-like chemical and electronic structure when blended with PMMA, and possess approximately equivalent electron-transfer rate constants compared to pure P3HT electrodes. The nanoscale electrochemical data are used to model and predict multiscale electrochemical behavior, revealing that macroscopic cyclic voltammograms should be much more kinetically facile than observed experimentally. This indicates that parasitic resistances rather than redox kinetics play a dominant role in macroscopic measurements in these conducting polymer systems. SECCM further demonstrates that the ambient degradation of the P3HT electroactivity within P3HT/PMMA blends is spatially heterogeneous. This work serves as a roadmap for benchmarking the quality of conductive polymer films as electrodes, emphasizing the importance of nanoscale electrochemical measurements in understanding macroscopic properties.

Keywords: microscopy; electrodes nanoscale; nanoscale visualization; conductive polymer; multiscale electrochemical

Journal Title: ACS nano
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.