Nanomaterials that comprise titanium dioxide (TiO2) nanoparticles have received much attention owing to their wide applications; presently, the green synthesis of TiO2 nanoparticles is a developing research area. In this… Click to show full abstract
Nanomaterials that comprise titanium dioxide (TiO2) nanoparticles have received much attention owing to their wide applications; presently, the green synthesis of TiO2 nanoparticles is a developing research area. In this study, the TiO2 nanoparticles were synthesized through a DC-pulsed discharge plasma over an aqueous solution surface under a high-pressure argon environment. The titanium-rod electrode was utilized as the material source for the TiO2 nanoparticle generation. Experiments were performed at room temperature with pressurized argon at 1–4 MPa. To generate a pulse electrical discharge plasma, a DC power supply of 18.6 kV was applied. The Raman spectroscopy showed that the TiO2 nanoparticle with a brookite structure was formed dominantly. The scanning transmission electron microscopy equipped with energy dispersion spectroscopy (STEM coupled with EDS) indicated that TiO2 coated with carbon and that without carbon coating were successfully produced at the nanoscale. The process presented here is an innovative process and can update the existing information regarding the synthesis of metal-based nanoparticles using pulsed discharge plasma under an argon environment.
               
Click one of the above tabs to view related content.