According to the importance of polyanion cathode materials in intercalation batteries, they may play a significant role in energy-storage systems. Here, evaluations of LiMBO3 and NaMBO3 (M = Mn, Fe,… Click to show full abstract
According to the importance of polyanion cathode materials in intercalation batteries, they may play a significant role in energy-storage systems. Here, evaluations of LiMBO3 and NaMBO3 (M = Mn, Fe, Co, Ni) as cathode materials of Li-ion and Na-ion batteries, respectively, are performed in the density functional theory (DFT) framework. The structural properties, structural stability after deintercalation, cell voltage, electrical conductivity, and rate capability of the cathodes are assessed. As a result, Li compounds have more structural stability and energy density than Na compounds in the C2/c frame structure. Cell voltage is increased by increasing the atomic number of the transition metal (TM). A noble approach is used to evaluate electrical conductivity and rate capability. M = Fe compounds exhibit the lowest band gaps (BGs), and M = Mn compounds exhibit almost the highest one. The best electrical rate-capable compounds are estimated to be M = Mn ones and the worst are M = Ni ones. As far as cell potential is not the concern, AMnBO3, ACoBO3–AFeBO3, and ANiBO3 are the best to the worst considered cathode materials.
               
Click one of the above tabs to view related content.