We report five new transition-metal complexes that inhibit the urease enzyme. Barbituric acid (BTA), thiobarbituric acid (TBA), isoniazid (INZ), and nicotinamide (NCA) ligands were employed in complexation reactions. The resulting… Click to show full abstract
We report five new transition-metal complexes that inhibit the urease enzyme. Barbituric acid (BTA), thiobarbituric acid (TBA), isoniazid (INZ), and nicotinamide (NCA) ligands were employed in complexation reactions. The resulting complexes were characterized using a variety of analytical techniques including infra-red and UV–vis spectroscopy, 1H NMR spectroscopy, elemental analysis, and single-crystal X-ray diffraction analysis. We describe two mononuclear complexes with a general formula {[M(NCA)2(H2O)4](BTA)2(H2O)}, where M = Co (1) and Zn (2), a mononuclear complex {[Ni(NCA)2(H2O)4](TBA)2(H2O)} (3), and two polymeric chains of a general formula {[M(INZ) (H2O)3](BTA)2(H2O)3}, where M = Co (4) and Zn (5). These complexes displayed significant urease enzyme inhibition with IC50 values in the range of 3.9–19.9 μM.
               
Click one of the above tabs to view related content.