LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CuO Nanoparticle-Decorated TiO2-Nanotube Heterojunctions for Direct Synthesis of Methyl Formate via Photo-Oxidation of Methanol

Photo from wikipedia

Methyl formate is widely employed as one of the important organic intermediates in C1 chemistry and as an environmentally benign chemical in the emerging area of “green chemistry”. We here… Click to show full abstract

Methyl formate is widely employed as one of the important organic intermediates in C1 chemistry and as an environmentally benign chemical in the emerging area of “green chemistry”. We here study the catalytic effectiveness of CuO/TiO2-nanotube nanocomposites for the direct synthesis of methyl formate via methanol photo-oxidation in this paper. The CuO/TiO2-nanotube nanocomposites with 7% CuO weight loading give a promising photocatalytic performance (over 93.3% methanol conversion and 89.4% methyl formate selectivity) at 25 °C under 365 nm UV irradiation. The turnover frequency and the apparent quantum efficiency reach up to 22.9 molmethanol gcat–1 h–1 and 57.6% over 7% CuO/TiO2-nanotube, respectively, which is mainly because of the effective minimization of the recombination of photogenerated electrons and holes by the surface ultrasmall-sized CuO particles. Furthermore, these CuO/TiO2-nanotube nanocomposites exhibit excellent durability and robust nature during the catalytic processes of the methanol photo-oxidation to methyl formate. The experimental results demonstrate the promise of the robust CuO/TiO2 nanocomposites for efficient and green production of methyl formate, which may offer guidelines for the design of efficient catalysts for selective alcohol conversion to other valuable chemicals.

Keywords: methyl formate; methyl; cuo tio2; tio2 nanotube

Journal Title: ACS Omega
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.