LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simple Sonochemical Method to Optimize the Heating Efficiency of Magnetic Nanoparticles for Magnetic Fluid Hyperthermia

Photo from academic.microsoft.com

We developed a fast, single-step sonochemical strategy for the green manufacturing of magnetite (Fe3O4) magnetic nanoparticles (MNPs), using iron sulfate (FeSO4) as the sole source of iron and sodium hydroxide… Click to show full abstract

We developed a fast, single-step sonochemical strategy for the green manufacturing of magnetite (Fe3O4) magnetic nanoparticles (MNPs), using iron sulfate (FeSO4) as the sole source of iron and sodium hydroxide (Na(OH)) as the reducing agent in an aqueous medium. The designed methodology reduces the environmental impact of toxic chemical compounds and minimizes the infrastructure requirements and reaction times down to minutes. The Na(OH) concentration has been varied to optimize the final size and magnetic properties of the MNPs and to minimize the amount of corrosive byproducts of the reaction. The change in the starting FeSO4 concentration (from 5.4 to 43.1 mM) changed the particle sizes from (20 ± 3) to (58 ± 8) nm. These magnetite MNPs are promising for biomedical applications due to their negative surface charge, good heating properties (≈324 ± 2 W/g), and low cytotoxic effects. These results indicate the potential of this controlled, easy, and rapid ultrasonic irradiation method to prepare nanomaterials with enhanced properties and good potential for use as magnetic hyperthermia agents.

Keywords: hyperthermia; magnetic nanoparticles; method; simple sonochemical; method optimize; sonochemical method

Journal Title: ACS Omega
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.