LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discovery and Structural Analysis to Improve the Enantioselectivity of Hydroxynitrile Lyase from Parafontaria laminata Millipedes for (R)-2-Chloromandelonitrile Synthesis

Hydroxynitrile lyase (HNL) catalyzes the reversible synthesis and degradation of cyanohydrins, which are important synthetic intermediates for fine chemical and pharmaceutical industries. Here, we report the discovery of HNL from… Click to show full abstract

Hydroxynitrile lyase (HNL) catalyzes the reversible synthesis and degradation of cyanohydrins, which are important synthetic intermediates for fine chemical and pharmaceutical industries. Here, we report the discovery of HNL from Parafontaria laminata (PlamHNL) millipedes, purification of the HNL to homogeneity, expression of the gene for the enzyme in heterologous expression hosts, and increase in the reaction rate and enantioselectivity in the synthesis of 2-chloromandelonitrile by protein engineering. The recombinant PlamHNL expressed in Pichia pastoris is glycosylated and has a higher thermostability and pH stability than the nonglycosylated HNL expressed in Escherichia coli. PlamHNL showed a unique wide substrate specificity among other millipede HNLs acting on various cyanohydrins, including 2-chloromandelonitrile, a key intermediate for the antithrombotic agent clopidogrel. We solved the X-ray crystal structure of the PlamHNL and found that the catalytic residues were almost identical to those of HNL from Chamberlinius hualienensis, although the forming binding cavity was different. In order to improve the catalytic activity and stereoselectivity, a computational structure-guided directed evolution approach was performed by an enzyme–substrate docking simulation at all of the residues that were exposed on the surface of the active site. The PlamHNL-N85Y mutant showed higher conversion (91% conversion with 98.2% ee of the product) than the wild type (76% conversion with 90% ee of the product) at pH 3.5 and 25 °C for 30 min of incubation. This study shows the diversity of millipede HNLs and reveals the molecular basis for improvement of the activity and stereoselectivity of the wild-type HNL to increase the reaction rate and enantioselectivity in the synthesis of 2-chloromandelonitrile.

Keywords: parafontaria laminata; enantioselectivity; hydroxynitrile lyase; hnl; plamhnl; synthesis

Journal Title: ACS Omega
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.