LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stereoselective Synthesis of Spirooxindole Derivatives Using One-Pot Multicomponent Cycloaddition Reaction and Evaluation of Their Antiproliferative Efficacy

Photo by oriento from unsplash

A highly stereoselective, one-pot, multicomponent method has been developed to synthesize pyrrolizidine- and N-methyl pyrrolidine-substituted spirooxindole derivatives. The [3 + 2] cycloaddition reaction involves the reaction between the dipole azomethine… Click to show full abstract

A highly stereoselective, one-pot, multicomponent method has been developed to synthesize pyrrolizidine- and N-methyl pyrrolidine-substituted spirooxindole derivatives. The [3 + 2] cycloaddition reaction involves the reaction between the dipole azomethine ylides, generated in situ from the reaction between isatin and secondary amino acids such as L-proline or sarcosine, and α,β-unsaturated carbonyl compounds as the dipolarophile. The reaction condition was optimized to achieve excellent regio- and stereoselectivity. Products were obtained in good yield using ethanol as a solvent at the reflux temperature. The newly synthesized spirooxindole derivatives were evaluated for their antiproliferative efficacy against National Cancer Institute (NCI)-60 cancer cell lines and DNA G-quadruplex (G4) interaction capacity. Compound 14b produced selective cytotoxicity against leukemia, renal, colon, and prostate cancer cell lines at a 10 μM concentration. The G4 interaction studies further suggested that these spirooxindole derivatives were devoid of any activity as DNA G4 ligands.

Keywords: pot multicomponent; antiproliferative efficacy; reaction; one pot; spirooxindole derivatives; cycloaddition reaction

Journal Title: ACS Omega
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.