LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cavitand and Molecular Cage-Based Porous Organic Polymers

Photo from wikipedia

Supramolecular cavitands and organic cages having a well-defined cavity and excellent host–guest complexing ability have been explored for a myriad of applications ranging from catalysis to molecular separation to drug… Click to show full abstract

Supramolecular cavitands and organic cages having a well-defined cavity and excellent host–guest complexing ability have been explored for a myriad of applications ranging from catalysis to molecular separation to drug delivery. On the other hand, porous organic polymers (POPs) having tunable porosity and a robust network structure have emerged as advanced materials for molecular storage, heterogeneous catalysis, water purification, light harvesting, and energy storage. A fruitful marriage between guest-responsive discrete porous supramolecular hosts and highly porous organic polymers has created a new interface in supramolecular chemistry and materials science, confronting the challenges related to energy and the environment. In this mini-review, we have addressed the recent advances (from 2015 to the middle of 2020) of cavitand and organic cage-based porous organic polymers for sustainable development, including applications in heterogeneous catalysis, CO2 conversion, micropollutant separation, and heavy metal sequestration from water. We have highlighted the “cavitand/cage-to-framework” design strategy and delineated the future scope of the emerging new class of porous organic networks from “preporous” building blocks.

Keywords: organic polymers; porous organic; based porous; cavitand molecular; cage based

Journal Title: ACS Omega
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.