LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Vitro Synthesis of Branchless Linear (1 → 6)-α-d-Glucan by Glucosyltransferase K: Mechanical and Swelling Properties of Its Hydrogels Crosslinked with Diglycidyl Ethers

Photo from academic.microsoft.com

A hydrogel was prepared from a polysaccharide, enzymatically synthesized through a one-pot reaction in aqueous solution, and its properties as a functional material were evaluated. Enzymatic synthesis using glucosyltransferase K… Click to show full abstract

A hydrogel was prepared from a polysaccharide, enzymatically synthesized through a one-pot reaction in aqueous solution, and its properties as a functional material were evaluated. Enzymatic synthesis using glucosyltransferase K obtained from Streptococcus salivarius ATCC 25975 was performed with sucrose as a substrate. The synthetic product was unbranched linear (1 → 6)-α-d-glucan with a high molecular weight, Mw: 1.0–3.0 × 105. The synthesized (1 → 6)-α-d-glucan was insoluble in water and crystallized in a monoclinic unit cell, which is consistent with the hydrated form of dextran. Transparent and highly swellable (1 → 6)-α-d-glucan hydrogels were obtained by crosslinking with diglycidyl ethers. The hydrogels showed no syneresis and no volume change during compression, resulting in the retention of shape under repeated compression. The elastic moduli of these hydrogels (<60 kPa) are smaller than those of other polysaccharide-based hydrogels having the same solid contents. The oven-dried gels could be restored to the hydrogel state with the original transparency and a recovery ratio greater than 98%. The mechanism of water diffusion into the hydrogel was investigated using the kinetic equation of Peppas. The properties of the hydrogel are impressive relative to those of other polysaccharide-based hydrogels, suggesting its potential as a functional biomaterial.

Keywords: diglycidyl ethers; linear glucan; synthesis branchless; glucosyltransferase; vitro synthesis

Journal Title: ACS Omega
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.