LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potentiometric Phosphate Ion Sensor Based on Electrochemical Modified Tungsten Electrode

Photo from wikipedia

Determination of phosphate ions in aqueous solutions attracts a great deal of interest in the areas of environment, medicine, and agriculture. As phosphoric acid is a poly basic acid, the… Click to show full abstract

Determination of phosphate ions in aqueous solutions attracts a great deal of interest in the areas of environment, medicine, and agriculture. As phosphoric acid is a poly basic acid, the different forms of existence at different pH result in direct determination facing a big challenge. Herein, we reported a potentiometric phosphate ion sensor based on a surface-modified tungsten electrode. Pure tungsten was electrodeposited at a constant potential of 0.2 V versus Ag|AgCl in Na2HPO4. WO3 and H3O40PW12·xH2O were electrodeposited on the surface of the tungsten electrode. The modified tungsten electrode was used as a working electrode in a two-electrode system to detect the concentration of phosphate ions in aqueous solutions. The detection limit of the modified tungsten electrode for phosphate ions is 10–6 M from pH 7 to pH 8 and 10–5 M from pH 9 to pH 10. It has good selectivity to other common anions. The long-term monitoring experiment showed that the potential fluctuation was less than ±3 mV in 24 h. Compared to conventional determination methods, the current phosphate ion sensor showed a close value in a real sample. The mechanism of phosphate ion response was investigated in detail. This sensor possesses advantages of simple manufacture, low cost, a wide pH range for detecting, and good selectivity.

Keywords: tungsten electrode; modified tungsten; phosphate ion; sensor; phosphate

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.