LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Advances in Screen Printing of Conductive Nanomaterials for Stretchable Electronics

Photo from academic.microsoft.com

Stretchable electronics have demonstrated tremendous potential in wearable healthcare, advanced diagnostics, soft robotics, and persistent human–machine interfaces. Still, their applicability is limited by a reliance on low-throughput, high-cost fabrication methods.… Click to show full abstract

Stretchable electronics have demonstrated tremendous potential in wearable healthcare, advanced diagnostics, soft robotics, and persistent human–machine interfaces. Still, their applicability is limited by a reliance on low-throughput, high-cost fabrication methods. Traditional MEMS/NEMS metallization and off-contact direct-printing methods are not suitable at scale. In contrast, screen printing is a high-throughput, mature printing method. The recent development of conductive nanomaterial inks that are intrinsically stretchable provides an exciting opportunity for scalable fabrication of stretchable electronics. The design of screen-printed inks is constrained by strict rheological requirements during printing, substrate–ink attraction, and nanomaterial properties that determine dispersibility and percolation threshold. Here, this review provides a concise overview of these key constraints and a recent attempt to meet them. We begin with a description of the fluid dynamics governing screen printing, deduce from these properties the optimal ink rheological properties, and then describe how nanomaterials, solvents, binders, and rheological agents are combined to produce high-performing inks. Although this review emphasizes conductive interconnections, these methods are highly applicable to sensing, insulating, photovoltaic, and semiconducting materials. Finally, we conclude with a discussion on the future opportunities and challenges in screen-printing stretchable electronics and their broader applicability.

Keywords: screen printing; printing conductive; nanomaterials stretchable; advances screen; stretchable electronics; conductive nanomaterials

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.