LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AlInGaAs Multiple Quantum Well-Integrated Device with Multifunction Light Emission/Detection and Electro-Optic Modulation in the Near-Infrared Range

Photo from wikipedia

A monolithic photonic chip with multifunctional light emission/detection and electro-optic modulation capabilities in the near-infrared range is proposed and realized on an InP-based wafer. Two identical AlInGaAs multiple quantum well… Click to show full abstract

A monolithic photonic chip with multifunctional light emission/detection and electro-optic modulation capabilities in the near-infrared range is proposed and realized on an InP-based wafer. Two identical AlInGaAs multiple quantum well (MQW) diodes operating independently as light emission/detection devices are fabricated using a two-step etching process on a single wafer and connected via a straight waveguide. The photocurrent induced in the MQW diode for the detection process is generated by the infrared light emitted by the MQW diode during the emission process and transmitted via the straight waveguide. The MQW diode has an electro-optic modulation characteristic, and its spectral responsivity exhibits a blueshift with an increasingly negative bias voltage under external infrared laser excitation. An on-chip communication test is conducted to study the potential applications of the proposed monolithic photonic chip for transmission of optical signals in the near-infrared range.

Keywords: detection; light emission; electro optic; emission detection; optic modulation; emission

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.