Open wound dressings should provide a moist environment, protect the wound from bacterial contamination, and shield it from further damage. These requirements, however, are hard to accomplish since such wounds… Click to show full abstract
Open wound dressings should provide a moist environment, protect the wound from bacterial contamination, and shield it from further damage. These requirements, however, are hard to accomplish since such wounds are colonized by pathogenic bacteria, including resistant species such as methicillin-resistant Staphylococcus aureus (MRSA). A new approach for treating open wounds that is based on sticky and dissolvable polyvinyl alcohol (PVA) microparticles containing live Bacillus subtilis (B. subtilis) is described. Microparticles, fabricated by the spray-drying technique, were administered directly to an open wound while B. subtilis continuously produced and secreted antimicrobial molecules. B. subtilis in PVA microparticles demonstrated remarkable antibacterial activity against MRSA and S. aureus. In in vivo experiments, both B. subtilis and empty PVA microparticles were effective in decreasing healing time; however, B. subtilis microparticles were more effective during the first week. There was no evidence of skin irritation, infection, or other adverse effects during the 15 day postoperative observation period. This concept of combining live secreting bacteria within a supportive delivery system shows great promise as a therapeutic agent for open wounds and other infectious skin disorders.
               
Click one of the above tabs to view related content.