LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergistic Effect of RbBr Interface Modification on Highly Efficient and Stable Perovskite Solar Cells

Photo by rgaleriacom from unsplash

Compact TiO2 films are one of the most widely used electron transport layers (ETLs) in planar perovskite solar cells (PSCs). However, the performance of the PSC device is controlled by… Click to show full abstract

Compact TiO2 films are one of the most widely used electron transport layers (ETLs) in planar perovskite solar cells (PSCs). However, the performance of the PSC device is controlled by the comprehensive qualities of the functional layers and their bilateral surfaces. In this work, the alkali metal halide of RbBr as the interfacial modifier is introduced into the interface of the TiO2 ETL and perovskite absorber. By spin-coating the proper content of RbBr, the surface of the TiO2 film consisting of smooth morphology and low density of oxygen-deficiency defect is readily obtained. The perovskite layer successively fabricated on the RbBr-modified TiO2 film demonstrates large grain size, low surface roughness, and low bulk defect density, which enhances the electron extraction and decreases nonradiation recombination. By virtue of the modulation of the perovskite crystal quality and the passivation of the interfacial defects, the light-harvesting efficiency of the corresponding device is increased to 21.15 from 19.21% for the PSC without a RbBr insertion layer. More importantly, the passivation strategy enables impressive device stability by retaining 90% of its initial efficiency in an ambient environment for 500 h. This study provides a promising and feasible strategy to regulate surface passivation engineering and simultaneously facilitate the perovskite crystal growth for the achievement of efficient and stable perovskite photovoltaics.

Keywords: perovskite solar; stable perovskite; rbbr; interface; efficient stable; solar cells

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.