Zeolitic imidazolate frameworks, like ZIF-8 and related structures, have shown great potential for the capture of carbon dioxide. Modifying their structure by exchanging part of the constituent organic ligands is… Click to show full abstract
Zeolitic imidazolate frameworks, like ZIF-8 and related structures, have shown great potential for the capture of carbon dioxide. Modifying their structure by exchanging part of the constituent organic ligands is a proven method for enhancing the capacity to absorb CO2. In this work, we performed solvent-assisted ligand exchange (SALE) on nanosized ZIF-8 (nZIF-8) with a series of functionalized imidazole derivatives (exchange percentages, after 24 h): 2-bromoimidazole (19%), 2-chloroimidazole (29%), 2-trifluoromethylbenzimidazole (4%), 2-mercaptobenzimidazole (4%), and 2-nitroimidazole (54%). The sodalite topology and porosity of nZIF-8 were maintained with all SALE modifications. Low-pressure CO2 adsorption of nZIF-8 (38.5 cm3 g–1) at STP was appreciably enhanced with all mixed-linker SALE products. Using halogenated (−Cl, −Br, and −CF3) imidazole derivatives in a 24 h SALE treatment resulted in increases between 11 and 22% in CO2 adsorption, while the thiol (−SH)- and nitro (−NO2)-functionalized SALE products led to 32 and 100% increases in CO2 uptakes, respectively. These CO2 uptakes were further optimized by varying the SALE treatment time. The SHbIm- and NO2Im-exchanged SALE products of nZIF-8 show 87 and 98 cm3 g–1 of CO2 uptakes after 60 and 120 h of SALE, respectively. These are record high CO2 adsorptions for all reported ZIF derivatives at low-pressure conditions.
               
Click one of the above tabs to view related content.