LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving the Stability of α-CsPbI3 Nanocrystals in Extreme Conditions Facilitated by Mn2+ Doping

Photo by kamilpphotos from unsplash

The wide application of CsPbI3 nanocrystals (NCs) is limited due to their poor phase stability. We reported that Mn2+-CsPbI3 NCs have better optical performance and phase stability. With a suitable… Click to show full abstract

The wide application of CsPbI3 nanocrystals (NCs) is limited due to their poor phase stability. We reported that Mn2+-CsPbI3 NCs have better optical performance and phase stability. With a suitable Mn/Pb ratio (5.0%), Mn2+-doped α-CsPbI3 NCs exhibited the best stability under UV irradiation, ethanol addition, and heating. Under UV irradiation and addition of ethanol, photoluminescence (PL) intensities of CsPbI3 NCs could be only preserved up to 35% (22 min UV irradiation) and 10% (ethanol addition), respectively, whereas, Mn2+-doped CsPbI3 (5.0%) exhibited much improved stability, and their intensities could be preserved up to 70% (22 min UV) and 58% (ethanol), respectively. It should be noted that crystal-phase stability could be maintained at least 7 h even at 120 °C. We believe that the improved stability in extreme conditions for α-CsPbI3 NCs can be further applied to optoelectronic devices.

Keywords: cspbi3; mn2; extreme conditions; cspbi3 nanocrystals; stability; cspbi3 ncs

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.