LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect on Human Vascular Endothelial Cells of Au Nanoparticles Synthesized from Vitex mollis

Photo from wikipedia

A green method for synthesizing gold nanoparticles is proposed using hydroethanolic extract of Vitex mollis fruit (Vm extract) as a reducer and stabilizer. The formation of gold nanoparticles synthesized with… Click to show full abstract

A green method for synthesizing gold nanoparticles is proposed using hydroethanolic extract of Vitex mollis fruit (Vm extract) as a reducer and stabilizer. The formation of gold nanoparticles synthesized with Vm extract (AuVmNPs) was monitored by measuring the ultraviolet–visible spectra. The morphology and crystalline phase were determined using scanning electron microscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Synthesized nanoparticles were generally spherical, and the size distribution obtained by transmission electron microscopy shows two populations with mean sizes of 12.5 and 22.5 nm. Cell viability assay using MTT and cellular apoptosis studies using annexin V on human umbilical vein endothelial cells (HUVECs) and the human mammary epithelial cell line (MCF10A) indicate that AuVmNPs have low toxicity. Cell migration tests indicate that AuVmNPs significantly inhibit HUVEC cell migration in a dose-dependent manner. The evaluation of the localization of AuVmNPs in HUVECs using confocal laser scanning microscopy indicates that nanoparticles penetrate cells and are found in the cytosol without preferential distribution and without entering the nucleus. The inhibitory effect on cellular migration and low toxicity suggest AuVmNPs as appropriate candidates in future studies of antiangiogenic activity.

Keywords: microscopy; nanoparticles synthesized; effect; endothelial cells; vitex mollis

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.