We developed a two-step chemical bath deposition method followed by calcination for the production of ZnO/Co3O4 nanocomposites. In aqueous reactions, ZnO nanotubes were first densely grown on Ni foam, and… Click to show full abstract
We developed a two-step chemical bath deposition method followed by calcination for the production of ZnO/Co3O4 nanocomposites. In aqueous reactions, ZnO nanotubes were first densely grown on Ni foam, and then flat nanosheets of Co3O4 developed and formed a porous film. The aspect ratio and conductivity of the Co3O4 nanosheets were improved by the existence of the ZnO nanotubes, while the bath deposition from a mixture of Zn/Co precursors (one-step method) resulted in a wrinkled plate of Zn/Co oxides. As a supercapacitor electrode, the ZnO/Co3O4 nanosheets formed by the two-step method exhibited a high capacitance, and after being calcined at 450 °C, these nanosheets attained the highest specific capacitance (940 F g–1) at a scan rate of 5 mV s–1 in the cyclic voltammetry analysis. This value was significantly higher than those of single-component electrodes, Co3O4 (785 F g–1) and ZnO (200 F g–1); therefore, the presence of a synergistic effect was suggested. From the charge/discharge curves, the specific capacitance of ZnO/Co3O4 calcined at 450 °C was calculated to be 740 F g–1 at a current density of 0.75 A g–1, and 85.7% of the initial capacitance was retained after 1000 cycles. A symmetrical configuration exhibited a good cycling stability (Coulombic efficiency of 99.6% over 1000 cycles) and satisfied both the energy density (36.6 Wh kg–1) and the power density (356 W kg–1). Thus, the ZnO/Co3O4 nanocomposite prepared by this simple two-step chemical bath deposition and subsequent calcination at 450 °C is a promising material for pseudocapacitors. Furthermore, this approach can be applied to other metal oxide nanocomposites with intricate structures to extend the design possibility of active materials for electrochemical devices.
               
Click one of the above tabs to view related content.