LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical Fingerprinting of Polymers Using Electron Energy-Loss Spectroscopy

Photo from wikipedia

Electron energy-loss spectroscopy (EELS) is becoming an important tool in the characterization of polymeric materials. The sensitivity of EELS to changes in the chemical structure of polymeric materials dictates its… Click to show full abstract

Electron energy-loss spectroscopy (EELS) is becoming an important tool in the characterization of polymeric materials. The sensitivity of EELS to changes in the chemical structure of polymeric materials dictates its applicability. In particular, it is important for compositional analysis to have reference spectra of pure components. Here, we report the spectra of the carbon K-edge of six polymers (polyethylene, polypropylene, polybutylene terephthalate, and polylactic acid) including copolymers (styrene acrylonitrile and acrylonitrile butadiene styrene), to be used as reference spectra for future EELS studies of polymers. We have successfully decomposed the carbon K-edge of each of the polymers and assigned the observed peaks to bonding transitions. The spectra have been acquired in standard experimental conditions, and electron beam damage has been taken into account during establishment of spectral–structural relationships. We found that the more commonly available low-energy resolution spectrometers are adequate to chemically fingerprint linear saturated hydrocarbons such as PE, PP, and PLA. We have thus moved a step closer toward creating an atlas of polymer EELS spectra, which can be subsequently used for chemical bond mapping of polymeric materials with nanoscale spatial resolution.

Keywords: loss spectroscopy; energy; energy loss; spectroscopy; electron energy

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.