LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of Multivariate Methods to Evaluate Differential Material Attributes of HPMC from Different Sources

Photo by brandi1 from unsplash

The aim of the present study is to achieve differential material attributes (DMAs) of hydroxypropyl methylcellulose (HPMC) with different viscosity grades (K4M, K15M, and K100M) from different manufacturers (Anhui Shanhe… Click to show full abstract

The aim of the present study is to achieve differential material attributes (DMAs) of hydroxypropyl methylcellulose (HPMC) with different viscosity grades (K4M, K15M, and K100M) from different manufacturers (Anhui Shanhe and Dow Chemical). Two kinds of multivariate methods, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), were adopted. The physicochemical properties of HPMC were systematically investigated via various techniques (e.g., SEM, particle size detection, and SeDeM characterization). Data from 33 characterization variables were applied to the multivariate methods. The PCA and OPLS-DA results indicated the differences between the HPMC from two manufacturers by the common variables that include the tablet hardness (HD), tensile strength (TS), bulk density, interparticle porosity, Carr index, cohesion index, Hausner ratio, flowability, and the width of the particle size distribution (span). Interestingly, these variables showed a certain correlation with each other, supporting the characterization results. Except for these different variables of the HPMC obtained by multivariate analysis results, distinguishable shapes and surface morphologies also appeared between different sources. To sum up, the powder properties (particle size, surface topography, dimension, flowability, and compressibility) and the tablet properties (HD and TS) were recognized as the DMAs of HPMC samples. This work provided the multivariate methods for the physicochemical characterization of HPMC, with potential in the quality control and formulation development.

Keywords: different sources; multivariate methods; material attributes; hpmc different; differential material

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.