LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional Integration of Catalysts with Si Nanowire Photocathodes for Efficient Utilization of Photogenerated Charge Carriers

Photo from wikipedia

Low-cost catalysts with high activity and durability are necessary to achieve efficient large-scale energy conversion in photoelectrochemical cell (PEC) systems. An additional factor that governs the construction of photoelectrodes for… Click to show full abstract

Low-cost catalysts with high activity and durability are necessary to achieve efficient large-scale energy conversion in photoelectrochemical cell (PEC) systems. An additional factor that governs the construction of photoelectrodes for PECs is the spatial control of the catalysts for efficient utilization of photogenerated charge carriers. Here, we demonstrate spatial decoupling of the light-absorbing and catalytic components in hierarchically structured Si-based photocathodes for the hydrogen evolution reaction (HER). By simply modifying a well-known metal-assisted chemical etching procedure, we fabricated a Si nanowire (NW) array-based photocathode with Ag–Pt catalysts at the base and small amounts of the Pt catalyst at the NW tips. This approach simultaneously mitigates the parasitic light absorption by the catalytic layers and recombination of charge carriers owing to the long transport distance, resulting in improved photoelectrochemical HER performance under simulated AM 1.5G illumination.

Keywords: charge carriers; photogenerated charge; utilization photogenerated; charge; efficient utilization

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.