LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Baffle Clearance on Scale Deposition in an Agitated Vessel

Photo from wikipedia

The material deposition in a mixing tank agitated by the MAXBLEND impeller in a turbulent state was quantified and compared between cases with and without baffle clearance. Magnesium hydroxide formed… Click to show full abstract

The material deposition in a mixing tank agitated by the MAXBLEND impeller in a turbulent state was quantified and compared between cases with and without baffle clearance. Magnesium hydroxide formed from the chemical reaction between calcium hydroxide and magnesium chloride was used as a model of scale formation. Flow velocity in the tank was investigated by employing computational fluid dynamics simulation and experimentally validated by an ultrasonic velocity profiler method. Results showed that the amount of scale decreased with the increase in the rotational speed of the impeller due to the erosion effect on the tank wall. In the case without baffle clearance, the smaller weight of the scale was deposited on the front of the baffle plate due to the flow impingement, which enhanced the removal of the scale deposition. However, the lower-velocity magnitude behind the baffles resulted in an enhancement in the formation of scale. Installation of baffle clearance caused a contraction flow in between the tank wall and baffles, and consequently, the higher flow velocity reduced the amount and thickness of the scale. Measurement of the torque showed that the baffle clearance did not affect the power consumption, so the installation of baffle clearance can be a promising approach to reduce scale deposition in terms of saving operational costs and increasing process efficiency and safety.

Keywords: scale deposition; baffle clearance; scale

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.