LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of Supercritical CO2 Foaming Technology for Waste Double-Base Propellants

Photo from wikipedia

This paper used a supercritical CO2 batch foaming process to treat a waste SP double-base propellant, which is a type of double-base propellants containing 58.6% nitrocellulose, 40.0% nitroglycerin, 0.8% centralite,… Click to show full abstract

This paper used a supercritical CO2 batch foaming process to treat a waste SP double-base propellant, which is a type of double-base propellants containing 58.6% nitrocellulose, 40.0% nitroglycerin, 0.8% centralite, and 0.5% vaseline, to solve a problem of poor stability of industrial explosives directly prepared by the propellant. Experiments show that this process can produce dense pores inside the SP double-base propellant. With the increase of the pressure of supercritical CO2, the number of pores inside the foamed SP double-base propellant increased, and these pores served as hotspots in the detonation reaction. An increased number of hotspots improved the detonation stability of the perfusion explosive. During the explosion, the energy of the perfusion explosive with the foamed SP double-base propellant was released more completely, so the shock wave energy and bubble energy of the explosive gradually increased with the increase of pressure. Therefore, the supercritical CO2 foaming process can promote the treatment technology of waste double-base propellants and can optimize the detonation performance of perfusion explosives by increasing the pressure of supercritical CO2.

Keywords: double base; waste double; supercritical co2; base propellants; base

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.