LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photo-oxidative Decolorization of Brilliant Blue with AgNPs as an Activator in the Presence of K2S2O8 and NaBH4

Photo by diamondforce from unsplash

The decolorization of brilliant blue (E133) in aqueous solution by K2S2O8 and NaBH4 with AgNPs as an activator was studied spectrophotometrically under normal laboratory conditions. Batch experiments were performed to… Click to show full abstract

The decolorization of brilliant blue (E133) in aqueous solution by K2S2O8 and NaBH4 with AgNPs as an activator was studied spectrophotometrically under normal laboratory conditions. Batch experiments were performed to investigate the effects of reaction time, initial dye concentration, activator concentration, solution pH, and temperature on the decolorization of E133. K2S2O8 and NaBH4 did not decolorize the dye E133 in the absence of AgNPs. The optimum dosage of AgNPs was 0.01 g/L, and 98% dye E133 degradation was observed with 3.75 mM K2S2O8 at 30 °C in ca. 60 min of reaction time. In the NaBH4/AgNPs system, only 60% dye degradation was observed for an identical reaction condition. The decolorization rate constant increases with the increase in concentrations of AgNPs, K2S2O8, NaBH4, and reaction temperature. The decolorization degree of the E133 responded linearly with K2S2O8 and NaBH4 concentrations. The existence of sulfate radicals (SO4·–) and hydroxyl radicals (HO·) generated during the decolorization of E133 was identified by using ethanol and tertiary butyl alcohol as scavengers. Based on the E133 solution absorbance changes at 628 nm, the decolorization mechanism was proposed and discussed.

Keywords: activator; decolorization brilliant; agnps; k2s2o8 nabh4; brilliant blue; decolorization

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.