Melt streams were attenuated into microfibers by high-speed airflow during melt blowing. The present work explored the effect of air-slot width on the fiber diameter and diameter evenness in flush… Click to show full abstract
Melt streams were attenuated into microfibers by high-speed airflow during melt blowing. The present work explored the effect of air-slot width on the fiber diameter and diameter evenness in flush sharp-die melt blowing. The airflow in different die melt blowing was first numerically simulated by the CFD approach. Then, the fiber dynamic whipping was captured by high-speed photography. Finally, a spinning experiment was implemented and the fiber diameters were measured. The result reveals that the sharp die with a larger air-slot width produces fibers with a larger diameter, but the uniformity is obviously better. This study reveals that the air flow, fiber whipping, and final fiber diameter are closely related to each other. The quality control of melt-blown fiber can be carried out by controlling the fiber whipping motion.
               
Click one of the above tabs to view related content.