LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Mg, Ca, Sr, and Ba Dopants on the Performance of La2O3 Catalysts for the Oxidative Coupling of Methane

Photo by johnschno from unsplash

Oxidative coupling of methane (OCM) is a reaction to directly convert methane into high value-added hydrocarbons (C2+) such as ethylene and ethane using molecular oxygen and a catalyst. This work… Click to show full abstract

Oxidative coupling of methane (OCM) is a reaction to directly convert methane into high value-added hydrocarbons (C2+) such as ethylene and ethane using molecular oxygen and a catalyst. This work investigated lanthanum oxide catalysts for OCM, which were promoted with alkaline-earth metal oxides (Mg, Ca, Sr, and Ba) and prepared by the solution-mixing method. The synthesized catalysts were characterized using X-ray powder diffraction, CO2-programmed desorption, and X-ray photoelectron spectroscopy. The comparative performance of each promoter showed that promising lanthanum-loaded alkaline-earth metal oxide catalysts were La-Sr and La-Ba. In contrast, the combination of La with Ca or Mg did not lead to a clear improvement of C2+ yield. The most promising LaSr50 catalyst exhibited the highest C2+ yield of 17.2%, with a 56.0% C2+ selectivity and a 30.9% CH4 conversion. Catalyst characterization indicated that their activity was strongly associated with moderate basic sites and surface-adsorbed oxygen species of O2–. Moreover, the catalyst was stable over 25 h at a reactor temperature of 700 °C.

Keywords: catalyst; coupling methane; oxidative coupling; methane; effects dopants; performance

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.