LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transforming Porous Silica Nanoparticles into Porous Liquids with Different Canopy Structures for CO2 Capture

Photo from wikipedia

Porous liquids (PLs) have both liquid fluidity and solid porosity, thereby offering a variety of applications, such as gas sorption and separation, homogeneous catalysis, energy storage, and so forth. In… Click to show full abstract

Porous liquids (PLs) have both liquid fluidity and solid porosity, thereby offering a variety of applications, such as gas sorption and separation, homogeneous catalysis, energy storage, and so forth. In this research, canopies with varying structures were utilized to modify porous silica nanoparticles to develop Type I PLs. According to experimental results, the molecular weight of canopies should be high enough to maintain the porous materials in the liquid state at room temperature. Characterization results revealed that PL_1_M2070 and PL_1_AC1815 displayed low viscosity and good fluidity. Both low temperature and high pressure positively influenced CO2 capacity. The cavity occupancy resulted in poorer sorption capacity of PLs with branched canopies in comparison with that with linear canopies. Furthermore, the sorption capacity of PL_1_M2070 was 90.5% of the original CO2 sorption capacity after 10 sorption/desorption cycles, indicating excellent recyclability.

Keywords: sorption; silica nanoparticles; capacity; porous liquids; porous silica

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.