LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

c-Axis-Oriented Platelets of Crystalline Hydroxyapatite in Biomimetic Intrafibrillar Mineralization of Polydopamine-Functionalized Collagen Type I

Photo from wikipedia

Mineralized collagen fibrils are important basic building blocks of calcified tissues, such as bone and dentin. Polydopamine (PDA) can introduce functional groups, i.e., hydroxyl and amine groups, on the surfaces… Click to show full abstract

Mineralized collagen fibrils are important basic building blocks of calcified tissues, such as bone and dentin. Polydopamine (PDA) can introduce functional groups, i.e., hydroxyl and amine groups, on the surfaces of type I collagen (Col-I) as possible nucleation sites of calcium phosphate (CaP) crystallization. Molecular bindings in between PDA and Col-I fibrils (Col-PDA) have been found to significantly reduce the interfacial energy. The wetting effect, mainly hydrophilicity due to the functional groups, escalates the degree of mineralization. The assembly of Col-I molecules into fibrils was initiated at the designated number of collagenous molecules and PDA. In contrast to the infiltration of amorphous calcium phosphate (ACP) precursors into the Col-I matrix by polyaspartic acid (pAsp), this collagen assembly process allows nucleation and ACP to exist in advance by PDA in the intrafibrillar matrix. PDA bound to specific sites, i.e., gap and overlap zones, by the regular arrangement of Col-I fibrils enhanced ACP nucleation and thus mineralization. As a result, the c-axis-oriented platelets of crystalline hydroxyapatite in the Col-I fibril matrix were observed in the enhanced mineralization through PDA functionalization.

Keywords: col; collagen; axis oriented; oriented platelets; mineralization; pda

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.