Nanofillers (NFs) are becoming a ubiquitous choice for applications in different technological innovations in various fields, from biomedical devices to automotive product portfolios. Potential physical attributes like large surface areas,… Click to show full abstract
Nanofillers (NFs) are becoming a ubiquitous choice for applications in different technological innovations in various fields, from biomedical devices to automotive product portfolios. Potential physical attributes like large surface areas, high surface energy, and lower structural imperfections make NFs a popular filler over microfillers. One specific application, where NFs are finding applications, is in adhesive science and technology. Incorporating NFs in the adhesive matrix is seen to tune the adhesives’ different properties like wettability, rheology, etc. Additionally, the functional benefits (like electrical/thermal conductivity) of these NFs are translated into the adhesives’ properties. Such an improvement in the properties is far to achieve using microfillers in the adhesive matrix. This mini-review provides an account of the impact of the addition of various nanofillers (NFs) on the properties of the adhesive composition.
               
Click one of the above tabs to view related content.