LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transformation of Amphiphilic Antiviral Drugs into New Dimensional Nanovesicles Structures

Photo by robertbye from unsplash

Improved techniques were applied to formulate drugs into dimensional nanostructures, doped “nanovesicles”. These nanovesicles are solely composed of self-assembled amphiphilic antiviral agents used for the treatment of viral infections caused… Click to show full abstract

Improved techniques were applied to formulate drugs into dimensional nanostructures, doped “nanovesicles”. These nanovesicles are solely composed of self-assembled amphiphilic antiviral agents used for the treatment of viral infections caused by flaviviruses, such as Zika virus. Studies were done to evaluate the effectiveness of the syntheses, formation, and performance under different experimental conditions, and behavior of the drug nanovesicles in vitro and in vivo. These studies demonstrated that assembling the hydrophobic antiviral drug molecules into nanodrugs is a successful technique for the delivery of the therapeutic agents, otherwise difficult to be supplied. Our studies confirmed that this nanodrug preserved and, in many cases, enhanced the embedded cellular activity of the parental free drug molecules, both in vitro and in vivo. This proposed formulation is highly important as it addresses the issue of insolubility and low bioavailabiity of a wide range of highly potent pharmaceutical drugs—not limited to a specific class of antiviral drugs—that are of high demand for the treatment of medical conditions and emerging pathogens.

Keywords: dimensional nanovesicles; amphiphilic antiviral; drugs new; transformation amphiphilic; new dimensional; antiviral drugs

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.