LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Complete System to Generate Clean Water from a Contaminated Water Body by a Handmade Flower-like Light Absorber

Photo from wikipedia

The utilization of solar energy to make human lives better has been one of the primary and green approaches adopted by ordinary people and researchers for decades. This approach has… Click to show full abstract

The utilization of solar energy to make human lives better has been one of the primary and green approaches adopted by ordinary people and researchers for decades. This approach has recently gained a lot of attention as a way to tackle clean water scarcity in remote areas. Costly components, complex manufacturing procedures with rarely available equipment, and a surface to condense water vapors are challenges in the way of its application in the required areas. Here, we propose a complete system to solve this problem with a handmade light absorber and a superhydrophilic surface (antifogging) to get vapors back to collect clean water. Our handmade flower-like light absorber stitched by crochet work, the single stitch method, was able to get a decent evaporation rate of 1.75 kg/m2·h in pure water and slightly lower rates of 1.62 and 1.65 kg/m2·h with brine and pond water, respectively. Still, our proposed superhydrophilic coated surface can collect ∼37% more water than the pristine surface. This system has a huge potential for use in rural areas because of multiple key advantages, such as simple technology, readily available low-cost raw materials, and easy fabrication.

Keywords: handmade flower; light absorber; clean water; water; complete system

Journal Title: ACS Omega
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.