LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unravelling the Catalytic Activity of MnO2, TiO2, and VO2 (110) Surfaces by Oxygen Coadsorption on Sodium-Adsorbed MO2 {M = Mn, Ti, V}

Photo by vo2master from unsplash

Metal-air batteries have attracted extensive research interest owing to their high theoretical energy density. However, most of the previous studies have been limited by applying pure oxygen in the cathode,… Click to show full abstract

Metal-air batteries have attracted extensive research interest owing to their high theoretical energy density. However, most of the previous studies have been limited by applying pure oxygen in the cathode, without taking into consideration the effect of the catalyst, which plays a significant role in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Adsorption of oxygen on (110) Na-MO2 is investigated, using density functional theory (DFT) calculations, which is important in the discharging and charging of Na-air batteries. Adsorption of oxygen on Na/MO2 was investigated, and it was observed that the catalysts encourage the formation of the discharge product reported in the literature, i.e., NaO2. The surface NaO2 appears to have bond lengths comparable to those reported for monomer NaO2.

Keywords: unravelling catalytic; mno2 tio2; tio2 vo2; catalytic activity; oxygen; activity mno2

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.