LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental and Kinetic Studies on Tobacco Pyrolysis under a Wide Range of Heating Rates

Photo from wikipedia

In the present work, experimental and kinetic studies are conducted to explore and model tobacco pyrolysis characteristics under a wide range of heating conditions. First, thermal decomposition processes of a… Click to show full abstract

In the present work, experimental and kinetic studies are conducted to explore and model tobacco pyrolysis characteristics under a wide range of heating conditions. First, thermal decomposition processes of a tobacco sample were investigated using thermogravimetric analysis/difference thermogravimetry (TGA/DTG) experiments under a wide range of heating rates (10–500 K/min), and the TGA/DTG profiles were compared to highlight the effect of heating rate on the pyrolysis characteristics. The results showed that the tobacco sample was sufficiently devolatilized at 1173.15 K (900 °C) and the final volatiles yields were not sensitive to the heating rate. Moreover, it was illustrated that the DTG curve presents a polymerization trend with the increase in heating rate. Then, kinetic parameters, including total component mass fraction, preexponential factor, and activation energy, were derived by deconvolution from TG/DTG profiles for each component with a one-step kinetic framework, and the correlations between kinetic parameters and heating rates were further explored and modeled. The results illustrated that four subpeaks can be found in the deconvolution, indicating the four components (volatile components, hemicellulose, cellulose, and lignin). In addition, the activation energy of each component was found to be insensitive with heating rate (with standard deviation less than 20%). Therefore, an average activation energy was used for each component to avoid the compensation effect and a power correlation between the heating rate and the preexponential factor could be found. A posteriori analysis also confirmed the validity of this correlation.

Keywords: heating rates; heating rate; wide range; range heating; pyrolysis

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.