LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization and Evaluation of Stabilizers for Tight Water-Sensitive Conglomerate Reservoirs

Photo from wikipedia

The upper Wuerhe formation in the Mahu-1 play is a tight conglomerate reservoir that has characteristics of low porosity and low permeability. During the early stage of field development, it… Click to show full abstract

The upper Wuerhe formation in the Mahu-1 play is a tight conglomerate reservoir that has characteristics of low porosity and low permeability. During the early stage of field development, it has been noticed that horizontal wells typically have a high flowback ratio and an extremely low oil production rate during the early production, and this is likely attributed to the water–rock interaction that causes the closure of generated hydraulic fractures. In this study, a stabilizer and its dosage in a fracturing fluid are optimized, and its effect on clay antiswelling and rock stabilization is evaluated. Experimental results indicate that a mixture of a salt and an inorganic cationic polymer can effectively inhibit the water–rock reaction by minimizing the clay swelling and compressing the electric double layer on the rock surface. The antiswelling rate of montmorillonite can reach 93.56%, and that of the reservoir rock powder can reach 75.32%. Meanwhile, Brazilian splitting tests are conducted to evaluate the mechanical property change of reservoir rocks before and after being submerged in fracturing fluids with different stabilizers. Compared to 4% KCl, which is currently used in the field, the new formula can enhance the breakdown pressure by more than 10% without increasing the cost. The findings of this work provide a solution for fracturing water-sensitive reservoirs and also establish a set of laboratory methods for optimizing stabilizers as fracturing fluid additives.

Keywords: water sensitive; rock; optimization evaluation; water; conglomerate; evaluation stabilizers

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.