LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photoexcited Intramolecular Charge Transfer in Dye Sensitizers: Predictive In Silico Screening for Dye-Sensitized Solar Cell Devices

Photo by lensyfoxography from unsplash

Efficient photoinduced intramolecular charge transfer (ICT) from donor to acceptor in dye molecules is the functional basis and key property in the working of a dye-sensitized solar cell (DSSC). To… Click to show full abstract

Efficient photoinduced intramolecular charge transfer (ICT) from donor to acceptor in dye molecules is the functional basis and key property in the working of a dye-sensitized solar cell (DSSC). To understand the ICT process in photoexcited dye molecules, we analyze the electronic properties and structural parameters of a chosen set of experimentally synthesized donor–acceptor (D–A) and donor−π-spacer−acceptor (D−π–A) type dye molecules in their ground, excited, and cationic states. The correlation between structural modification and charge redistribution in different parts of the molecule helps to identify the extent of π-conjugation and spatial rearrangement of electron density localization along the molecular skeleton. We find that prominent twisting of several groups and the resulting molecular bond rearrangements in larger parts of the molecule promote efficient donor to acceptor ICT, such as in D–A type ADEKA1 and C275 dyes. Thus, based on the modest computation of structural and electronic properties of dye molecules in their respective ground, excited, and cationic states, we identify the desired structural changes that facilitate tunable intramolecular charge transfer to highlight a simple and direct prescription to screen out probable efficient dye molecules among many samples. Our approach complements recent experimental evidence of capturing the structural view of the excited-state charge transfer in molecules.

Keywords: dye molecules; intramolecular charge; charge; charge transfer; dye

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.