LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preferential Adsorption Performance of Ethane in a Robust Nickel-Based Metal–Organic Framework for Separating Ethane from Ethylene

Photo from wikipedia

Development of an ethane-selective adsorbent to separate ethane from ethylene is a challenging issue with great significance for ethylene purification. The adsorptive separation technique based on physical adsorption holds a… Click to show full abstract

Development of an ethane-selective adsorbent to separate ethane from ethylene is a challenging issue with great significance for ethylene purification. The adsorptive separation technique based on physical adsorption holds a great promise to address this issue. Herein, we report a robust ethane-selective metal–organic framework, Ni(BODC)(TED), and investigate its separation performance on C2H6/C2H4. The as-synthesized Ni(BODC)(TED) exhibits excellent water vapor stability and high capacity of C2H6 molecules with an uptake of 3.36 mmol/g at 298 K and 100 kPa, higher than those of many adsorbents reported in recent years. Its C2H6/C2H4 selectivity predicted by the ideal adsorbed solution theory (IAST) model reaches 1.79. A molecular simulation is applied to unveil the preferential adsorption mechanism of ethane. Calculation shows that five strong C–H···H interactions are formed between C2H6 and the framework of Ni(BODC)(TED), and the isosteric heat of ethane on Ni(BODC)(TED) is 27.02 kJ/mol, higher than that of ethylene, resulting in preferential adsorption of ethane. Ni(BODC)(TED) would become a promising member of the family of ethane-selective materials for the industrial separation of ethane from ethylene.

Keywords: preferential adsorption; adsorption; ethane; ethane ethylene; bodc ted

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.