LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of •OH-Initiated and •NO3-Initiated Transformation Products of Polycyclic Aromatic Hydrocarbons by Electronic Structure Approaches

Photo from wikipedia

The abiotic reaction products of polycyclic aromatic hydrocarbons (PAHs) with hydroxyl radicals (•OH) and nitrate radicals (•NO3) are nitro-, oxygen-, and hydroxyl-containing PAHs (NPAHs, OPAHs, and OHPAHs). Four methods of… Click to show full abstract

The abiotic reaction products of polycyclic aromatic hydrocarbons (PAHs) with hydroxyl radicals (•OH) and nitrate radicals (•NO3) are nitro-, oxygen-, and hydroxyl-containing PAHs (NPAHs, OPAHs, and OHPAHs). Four methods of the highest occupied molecular orbital (HOMO), Fukui function (FF), dual descriptor (DD), and population of π electrons (PP-π) are selected to predict the chemical reactivity of PAHs attacked by •OH and •NO3 in this study. The predicted •OH-initiated and •NO3-initiated transformation products are compared with the main PAH transformation products (PAH-TPs) observed in the laboratory. The results indicate that PP-π and DD approaches fail to predict the transformation products of fused PAHs containing five-membered rings. By predicting the PAH-TPs of 13–14 out of the 15 parent PAHs accurately, HOMO and FF methods were shown to be suitable for predicting the transformation products formed from the abiotic reactions of fused PAHs with •OH and •NO3.

Keywords: aromatic hydrocarbons; transformation products; initiated no3; polycyclic aromatic; products polycyclic; transformation

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.