LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insight into Nanoparticle-Number-Derived Characteristics of Precharged Biodiesel Exhaust Gas in Nonthermal Plasma State

Photo by kellysikkema from unsplash

The utilization of biodiesel as an alternative partial replacement of diesel fuel was shown to improve exhaust emissions from diesel engines. Waste cooking oil biodiesel (WCO) has also gained more… Click to show full abstract

The utilization of biodiesel as an alternative partial replacement of diesel fuel was shown to improve exhaust emissions from diesel engines. Waste cooking oil biodiesel (WCO) has also gained more attention due to edible biofuel supply and the environment. In this study, a nonthermal plasma (NTP) technique was applied to be equipped into the after-treatment system of a four-cylinder diesel engine at medium- and high-load conditions. The exhaust gases in the NTP state from the combustion of WCO and diesel (D100) fuels were partially drawn by spectrometers and nanoparticle-number-derived characteristics were analyzed. The particle number, area, and mass concentrations were in log-normal distribution over equivalent diameters, and they were higher at high load. The concentration of the particulate matter (PM) was lower but was larger in size when the NTP charger was activated due to coagulation principally owing to WCO’s number and surface area. The total particle masses were lower for WCO at the two load conditions tested. During NTP charger activation, the mass mean diameters were increased by maximum values of 24.0% for D100 and 5.5% for WCO. The PM removal efficiencies were maximized by 10.8% for D100 and 16.7% for WCO when the NTP charger was in use, and the WCO exhaust was dominantly seen to simultaneously reduce NOx and PM emissions.

Keywords: nanoparticle number; nonthermal plasma; biodiesel; number; number derived; wco

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.