LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Base-Free Synthesis and Photophysical Properties of New Schiff Bases Containing Indole Moiety

Photo from wikipedia

Schiff bases represent an essential class in organic chemistry with antitumor, antiviral, antifungal, and antibacterial activities. The synthesis of Schiff bases requires the presence of an organic base as a… Click to show full abstract

Schiff bases represent an essential class in organic chemistry with antitumor, antiviral, antifungal, and antibacterial activities. The synthesis of Schiff bases requires the presence of an organic base as a catalyst such as piperidine. Base-free synthesis of organic compounds using a heterogeneous catalyst has recently attracted more interest due to the facile procedure, high yield, and reusability of the used catalyst. Herein, we present a comparative study to synthesize new Schiff bases containing indole moieties using piperidine as an organic base catalyst and Au@TiO2 as a heterogeneous catalyst. In both methods, the products were isolated in high yields and fully characterized using different spectral analysis techniques. The catalyst was reusable four times, and the activity was slightly decreased. The presence of Au increases the number of acidic sites of TiO2, resulting in C=O polarization. Yields of the prepared Schiff bases in the presence of Au@TiO2 and piperidine were comparable. However, Au@TiO2 is an easily separable and recyclable catalyst, which would facilitate the synthesis of organic compounds without applying any hazardous materials. Furthermore, the luminescence behavior of the synthesized Schiff bases exhibited spectral shape dependence on the substituent group. Interestingly, the compounds also displayed deep-blue fluorescence with Commission Internationale de l’Éclairage (CIE) coordinates of y < 0.1. Thus, these materials may contribute to decreasing the energy consumption of the emitting devices.

Keywords: schiff; synthesis; base free; catalyst; schiff bases

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.