LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile Preparation of Fluorescent Carbon Dots from Glutathione and l-Tryptophan for Sensitive and Selective Off/On Detection of Fe3+ Ions in Serum and Their Bioimaging Application

Photo from wikipedia

In the past decade, carbon dots (CDs) have attracted considerable attention due to their excellent properties such as low toxicity, good biocompatibility, good fluorescence imaging, etc. Here, glutathione and l-tryptophan… Click to show full abstract

In the past decade, carbon dots (CDs) have attracted considerable attention due to their excellent properties such as low toxicity, good biocompatibility, good fluorescence imaging, etc. Here, glutathione and l-tryptophan were used as carbon sources to hydrothermally synthesize CDs for sensitive and selective off/on detection of Fe3+ ions. The CDs are spherical nanoparticles with an average particle size of 3.8 nm and the presence of organic groups such as hydroxyl, carboxyl, sulfhydryl, and amino groups on their surface. The experiment results display that Fe3+ ions can be selectively and sensitively detected by quenching the fluorescence of CDs. Moreover, the fluorescence of the CDs+Fe3+ system can be restored after adding ascorbic acid. Thus, an off/on fluorescent probe for the determination of Fe3+ can be formed using the as-synthesized CDs solution. The CDs show a good linear range of 0–13.89 mM and a 0.0331 μM limit of detection for Fe3+, and the most probable mechanism concluded from ultraviolet–visible spectroscopy, electrospray ionization–mass spectrometry, and fluorescence spectrophotometry is a mixed static and dynamic quenching. Furthermore, the cytotoxicity experiment results show that CDs have low toxicity and can be used for intracellular imaging.

Keywords: fe3 ions; fe3; detection fe3; carbon dots

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.