LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Chemical–Electrochemical Hydrogen Production from Coal Slurry by a Two-Step Process: Oxidation of Coal by Ferric Ions and Electroreduction of Hydrogen Ions

Photo from wikipedia

Hydrogen production from the electrolysis of coal slurry is a promising approach under the condition of low voltage (0.8–1.2 V) and medium temperature. However, the rate of hydrogen production is… Click to show full abstract

Hydrogen production from the electrolysis of coal slurry is a promising approach under the condition of low voltage (0.8–1.2 V) and medium temperature. However, the rate of hydrogen production is slugged by poor anode kinetics, under an electrochemical condition that results from the collision of the coal particles with the anode surface. This paper reports a novel process that consists of two steps: the oxidation of the coal slurry by ferric ions(III) in a hydrothermal reactor at a temperature of 120–160 °C and the electro-oxidation of ferric ions(II) in the electrochemical cell to produce hydrogen. This technique circumvents the technical issues experienced in the conventional coal slurry electrolysis process by adopting a two-step process consisting of solid–liquid reactions instead of solid–solid reactions. This indirect oxidation process produced a current density of 120 mA/cm2 at room temperature and a voltage of 1 V, which is higher than the values reported in the conventional processes. An investigation of the oxidation mechanism was carried out via scanning electron microscopy, Fourier-transform infrared spectroscopy and elemental analysis. The results obtained showed that the oxidation of coal by ferric ions occurs from the surface to the inner parts of the coal particles in a stepwise manner. It was also revealed that the ferric ions in the media increased the active interfaces both of the coal particles and of the anode electrode. This explains the high hydrogen production rate obtained from this process. This novel discovery can pave the way for the commercialization of coal slurry electrolysis.

Keywords: ferric ions; oxidation; coal; hydrogen; coal slurry; process

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.