Herein, we developed an efficient and convenient method to address the problem of thickener decomposition in the low- permeability oilfield production process. It is crucial to design breakers that reduce… Click to show full abstract
Herein, we developed an efficient and convenient method to address the problem of thickener decomposition in the low- permeability oilfield production process. It is crucial to design breakers that reduce viscosity by delaying thickener decomposition in appropriate environments. By using lignin in biomass as a substrate for β-mannanase immobilization (MIL), we fabricated a gel breaker, surface gelatin-coated β-mannanase-immobilized lignin (Ge@MIL). Through experiments and performance tests, we confirmed that the prepared Ge@MIL can release enzymes at a specific temperature, meanwhile having temperature-sensitive phase change properties and biodegradability. The results also show the tight tuning over the surface coating of Ge@MIL by a water-in-oil emulsion. Therefore, the prepared Ge@MIL has a promising application in the field of oil extraction as a green and efficient temperature-sensitive sustained-release capsule.
               
Click one of the above tabs to view related content.