LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Comparative Investigation of Chemically Reduced Graphene Oxide Thin Films Deposited via Spray Pyrolysis

Photo from wikipedia

We present a comparative investigation between thin films of graphene oxide (GO) and chemically reduced graphene oxide (rGO) deposited onto glass substrates via spray pyrolysis. Two reduction techniques are investigated:… Click to show full abstract

We present a comparative investigation between thin films of graphene oxide (GO) and chemically reduced graphene oxide (rGO) deposited onto glass substrates via spray pyrolysis. Two reduction techniques are investigated: (1) the exposition of a sprayed layer of GO to vapors of hydrazine hydrate to produce rGOV and (2) the addition of liquid hydrazine hydrate to a suspended GO solution, which is then sprayed onto a substrate to produce rGOL. Three different spectroscopy techniques, Raman, Fourier transform infrared, and UV–Vis–NIR, show that the two reduced samples have less lattice disorder in comparison to GO, with rGOL having the highest degree of reduction. Interestingly, topography characterization by atomic force microscopy reveals a morphological change occurring during the exposure to hydrazine hydrate vapors, resulting in a thickness of 110 nm for the rGOV film, which is a factor of 16 larger than rGOL and GO. Finally, I–V measurements show a significant decrease of the GO’s resistivity after the reduction process, where rGOL features a resistivity 90 times lower than rGOV, confirming that rGOL has the highest degree of reduction. Our results indicate that the reduction process for rGOV is susceptible to introducing intercalated water molecules in the material while the fabrication technique for rGOL is a suitable route to obtain a material with minimal lattice disorder and properties approaching those of graphene.

Keywords: chemically reduced; thin films; reduced graphene; graphene oxide; reduction; comparative investigation

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.