LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting Reaction Mechanisms for the Threonine-Residue Stereoinversion Catalyzed by a Dihydrogen Phosphate Ion

Photo by nyenchen from unsplash

The stereoinversion of amino acid residues in proteins is considered to trigger various age-related diseases. Serine (Ser) residues are relatively prone to stereoinversion. It is assumed that threonine (Thr) residues… Click to show full abstract

The stereoinversion of amino acid residues in proteins is considered to trigger various age-related diseases. Serine (Ser) residues are relatively prone to stereoinversion. It is assumed that threonine (Thr) residues also undergo stereoinversion, which results in the formation of the d-allo-Thr residue, by the same mechanisms as those for Ser-residue stereoinversion; however, d-allo-Thr residues have not been detected in vivo. To date, although Ser-residue stereoinversion has been suggested to progress via enolization, plausible reaction mechanisms for Thr-residue stereoinversion have not been proposed. In this study, we investigated the pathway of Thr-residue enolization and successfully identified the three types of plausible reaction pathways of Thr-residue stereoinversion catalyzed by a dihydrogen phosphate ion. The geometries of reactant complexes, transition states, and enolized product complexes were optimized using B3LYP density functional methods, and single-point calculations were performed for all optimized geometries using Møller–Plesset perturbation theory to obtain reliable energies. As a result, the calculated activation energies of Thr-residue stereoinversion were 105–106 kJ mol–1, which were comparable with those of Ser-residue stereoinversion reported previously. The infrequency of Thr-residue stereoinversion may be due to other factors, such as the hydrophobicity and/or the steric hindrance of the γ-methyl group, rather than the high activation energies.

Keywords: thr residue; stereoinversion catalyzed; residue stereoinversion; stereoinversion; reaction mechanisms

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.