The complexes formed between Pb2+ and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were reinvestigated in aqueous solutions using a combination of pH potentiometry, UV–vis spectroscopy, and NMR spectroscopy. The thermodynamic data were supported… Click to show full abstract
The complexes formed between Pb2+ and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were reinvestigated in aqueous solutions using a combination of pH potentiometry, UV–vis spectroscopy, and NMR spectroscopy. The thermodynamic data were supported by kinetics assays. Differently protonated complexes, i.e., [PbH3L]+, [PbH2L], [PbHL]−, and [PbL]2–, were detected, and the corresponding stability constants (logβ) at T = 298 K and I = 0.1 M NaCl were 33.1 ± 0.2, 32.00 ± 0.06, 29.28 ± 0.06, and 25.3 ± 0.1, respectively. Results differed significantly from those previously reported by Chaves et al. (Talanta1992, 39, 24918965370) and Pippin et al. (Inorg. Chim. Acta1995, 239, 43) in both the speciation and the overall complex stability; the latter in particular was found to be remarkably higher. The work disclosed herein provides revised data on the Pb2+-DOTA complexes, which should be used as a new stability benchmark during the development of lead chelators.
               
Click one of the above tabs to view related content.