The present study describes the development of multifunctional hemostatic sponges to control bleeding. Chitosan (Ch) and poly(vinyl alcohol) (PVA) were selected as the basic polymeric matrix [Ch/PVA] for sponges. Glycerol… Click to show full abstract
The present study describes the development of multifunctional hemostatic sponges to control bleeding. Chitosan (Ch) and poly(vinyl alcohol) (PVA) were selected as the basic polymeric matrix [Ch/PVA] for sponges. Glycerol and citric acid were used as crosslinkers [Ch/PVA/G(Cl)] to enhance the mechanical properties of the developed sponges. Ciprofloxacin (AB) was added to the developed sponge to impart antibacterial activity. Hydroxyapatite (HA) was also added, which would make the sponge suitable for bone surgery. Among the developed sponges, the Ch/PVA/G(Cl)-HA-AB sponge demonstrated enhanced cell viability, mechanical properties, and strong antimicrobial effect against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, in addition to platelet aggregation activity. The addition of ciprofloxacin and hydroxyapatite promotes a unique synergistic effect of antimicrobial activity and hemostasis. Thus, the present study introduces Ch/PVA/G(Cl)-HA-AB, a multifunctional hemostatic sponge that would be suitable for bone surgical applications.
               
Click one of the above tabs to view related content.