LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and Phase Behavior of a Linear Amphiphilic Multiblock Copolymer

Photo from wikipedia

Linear amphiphilic multiblock copolymer PPMPEs, obtained through a stepwise method, and linear amphiphilic random copolymer PPMPEs-1, obtained through a one-pot method, were synthesized using poly(propylene glycol) diglycidyl ether (PPGDGE), poly(ethylene… Click to show full abstract

Linear amphiphilic multiblock copolymer PPMPEs, obtained through a stepwise method, and linear amphiphilic random copolymer PPMPEs-1, obtained through a one-pot method, were synthesized using poly(propylene glycol) diglycidyl ether (PPGDGE), poly(ethylene glycol) diglycidyl ether (PEGDGE), and monoethanolamine (MEA) as the main raw materials. The structures of PPMPEs and PPMPEs-1 were characterized by FT-IR, 1H NMR, and gel permeation chromatography, which proved that the copolymers were synthesized with different components. Transmittance of the copolymer was tested by UV–vis. By changing the ratio of PEGDGE content and the concentration of the copolymer aqueous solution, the phase behaviors of PPMPEs and PPMPEs-1 were compared and studied in depth. It mainly highlighted the advantages of the stepwise method compared to the one-pot method. The transmittance of the polymer solutions could be improved by lowering the pH value in the acidic solution or increasing the pH value in the alkaline solution. Moreover, as the reaction degree of the PPMPEs hydrophobic chain segment increased, the transmittance decreased.

Keywords: multiblock copolymer; copolymer; linear amphiphilic; phase; amphiphilic multiblock

Journal Title: ACS Omega
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.